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BOUNDARY LINEAR INTEGRAL METHOD FOR 
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SUMMARY 
A boundary linear integral method based on Green function theory has been developed to solve the full 
potential equation for subsonic and transonic flows. In this integral method, potential values in the flow 
region are determined by potential values represented by boundary integrals and a volume integral. The 
boundary potential values are obtained by implementing the boundary integrals along boundary segments 
where a linear potential relation is assumed. The volume integral is evaluated in a grid generated by finite 
element discretization. The volume integral is evaluated only outside the body. Therefore there is no extra 
boundary treatment required for evaluation of the volume integral. The source term is assumed to be 
constant in an element integral volume. The volume integral needs to be evaluated only once and can be 
stored in computer memory for further usage. 
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INTRODUCTION 

The integral method for solving partial differential equations is a very useful tool in com- 
putational fluid dynamics. This method provides an alternative approach to the finite difference 
and finite element methods for solving transonic potential flows. One of the advantages of the 
integral method is that it can be easily applied to solve flow problems over complex configura- 
tions. A major technical obstacle involved with other methods seems to be the difficulty in 
generating suitable grids for flows with complex configurations.' In the integral method the 
computational grids include two parts: boundary grids and field grids. Boundary grids are used 
for implementation of the boundary integrals while field grids are used for evaluation of certain 
volume integrals instead of the conventional purpose of replacing partial differential equations. 
Therefore many kinds of grids can be adopted for field grids required by the integral method. 

Another advantage of the integral method is that solutions can be obtained by only using 
surface panels, and solutions everywhere else can be represented by the solutions on surface 
panels. For non-linear equations, only the discretized simultaneous equations for surface points 
are solved in iterative solution procedures. Generally, the number of grid points on surfaces is 
much smaller than the number of grid points in the field. Thus the integral method could take less 
computer CPU time. 

Computational schemes based on the integral formulation have been developed for the linear 
Prandtl-Glauert equation.23 More recently, the full potential equation has been solved using the 
integral method.4- Application of the integral method to solve the unsteady potential equation 
has been studied.'3*14 The full potential equation has also been solved using the integral method 
for flows over multielement aerofo i l~ '~  and over the entire For transonic flows, some 
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methods combine the integral method with the finite volume method’ while other methods use 
the integral method incorporated with the finite difference method.’ It is not clear how these 
methods treat the shock integrals resulting from the Green function transformation. 

In this paper the exact integral method is applied to solve the full potential equation for 
compressible flows. The boundary linear integral method1* is used in this work. The coefficient 
matrix is formulated on body grid points only. The non-linear full potential equation is solved by 
a Newton-Raphson iteration procedure. In each iteration the influence matrix does not change 
and needs to be decomposed only once. Only the source term in the volume integral needs to be 
evaluated in each iteration. After potential values on the body have been obtained, potential 
values anywhere else can be calculated. For transonic flows, shock integrals are calculated and 
contributions are added to the right-hand side of the discretized simultaneous equations. Our 
results show that shock integrals are necessary for capturing sharp shock jumps. 

In this work, two-dimensional flows over the NACA 0012 aerofoil are calculated. Numerical 
results are compared with experimental data. The good agreement between numerical results 
and experimental data shows that the boundary linear integral method provides an alternative 
tool for analytical and design purposes in aeronautical engineering. 

GOVERNING EQUATION AND BOUNDARY CONDITIONS 

In Cartesian co-ordinates the conservative form of the full potential equation is 

v - (pV@) = 0, 

where @ is the full potential, p is the density and V is defined by 

a -  a -  a -  
ax ay a2 

V = - i + - j + - k .  

The full potential equation given by (1) is not very suitable for integral representation because the 
left-hand side of this equation is not a Laplacian operator. However, the full potential equation 
can be written in the alternative form 

V2@ = 6. (3) 

a=M2OSs, (4) 

The source term r~ is expressed by 

where M is the Mach number ass is the rate of velocity change along the streamline direction. 
The boundary condition of equation (1) at infinity is given by 

@, = V, (x cos ct + y sin a). (5 )  

n - V@ =0, (6) 

The surface boundary conditions for inviscid flows are the tangential flow conditions given by 

where n is the normal vector on the body surface. The Kutta condition is also implemented, which 
requires that the flow leaves the trailing edge smoothly. 

In this work the superimposition principle is used to solve equation (3). The solution of this 
equation has two parts, (D1 and 02. Ol is the harmonic solution and (D2 is the unharmonic 
solution. Thus the solution of equation (3) can be represented by 

@=@, +@2 (7) 
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and the Laplacian operation is 

V 2 @ = V Z 0 1  +V2@,. (8) 

Since O1 is harmonic and O2 is unharmonic, O1 satisfies the Laplace equation and 0, satisfies the 
Poisson equation. Therefore equation (3) can be decomposed into two equations: 

v2m1 =o, (9) 

V2@, = 6. (10) 
In this work 0, is solved by using the routine linear potential panel methodi8 and Q2 is obtained 
by the field boundary linear integral method. After decomposition of the partial differential 
equation, a set of decomposed boundary conditions is also required. The boundary conditions at 
infinity can be decomposed as 

mlm = V, (x cosa + y sina), (11) 

Qzm=0. (12) 
Considering equations (6) and (7), the tangential condition on the body surface can also be 
decomposed. Substituting equation (7) into equation (6), we have 

(13) 
Since Ql is the incompressible potential flow solution, Q1 must satisfy the tangential condition on 
the body surface 

n * V@ =n * Val + n  * V@, =O. 

n*VcP1 =O. (14) 

Therefore 

n - VO, = 0. 

The Kutta condition can also be decomposed in the same way. 

iteratively. Solutions are assumed to be obtained when the iterative procedure converges. 
The Laplace equation for O1 is solved only once and the Poisson equation can be solved 

INTEGRAL FORMULATION 

The integral methods are based on Green’s theory. One of the useful formulations is the second 
Green identityZo which is 

( @V2 OL - @,Vz@)dR = - 

The necessary condition for this integral transformation is that the potential 0 is continuously 
differentiable and has continuous partial derivatives of the second order in region R. In transonic 
flows, shocks are present in the flow region. Across shocks, both the first- and second-order 
derivatives of the potential are not continuous. Therefore, in order to satisfy the continuity 
condition requirement of the potential derivatives, the boundary of the region R must include the 
shocks, and the resulting boundary integrals along shocks are called shock integrals. 

Using Green’s theorem, O1 can be represented by the sum of boundary integrals, 
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and O2 can be represented by the sum of boundary integrals and a volume integral, 

where the surface integral is on boundaries of a single connected region and the volume integral is 
inside the region. m1 (x,, y,) and 0, (x,, y,) are decomposed potential values at an arbitrary 
location P inside the region or on the boundary. For two-dimensional problems QL is given by 

2 0.5 1 
2A 

~L=--ln[(x-x,)Z+(y-yP) 3 . 

In equations (17) and (18) the boundary integrals include those at infinity. When a numerical 
procedure is employed, it is inconvenient to perform the integrals at infinity directly. However, 
integrals at infinity can be transformed into a simple solution called the undisturbed potential by 
using Green function theory. The undisturbed potential is defined by 

Of = V,  (x cos a + y sina). (20) 

The undisturbed potential satisfies the Laplace equation Vz@ = 0 everywhere and also satisfies 
the boundary condition at infinity. Considering a region surrounded by a boundary at infinity 
and applying Green function theory to the undisturbed potential, we have 

Thus integrals at infinity in equation (17) can be represented by the undisturbed potential Of and 
integrals at infinity in equation (18) disappear because @,, is equal to zero as determined by the 
boundary condition decomposition. By substituting the undisturbed potential into equation (17) 
and 02, =O into equation (18), solutions can be expressed by 

where B represents body surfaces, C denotes wakes or cuts between region boundaries and SH is 
along shock waves. On body surfaces and wakes we have 

P 
J (n.V@,)@,ds=O, 
B+C 

(n * VO, ) mL ds = 0, 
]B+C 

because of the tangential boundary conditions. Across shocks we have IsH O2 (n - V@,) ds = 0, 

since the tangential velocities are assumed to be equal across shock waves. Thus equations (17) 
and (1 8) become respectively 

r r 
(x, , y,) = Qf - Ol (n - VQL) ds - r (n * V@, ) ds, 

JB Jc 



BOUNDARY LINEAR INTEGRAL METHOD 703 

r r r r 

where 

rl =ml+ -a+ -, (29) 

r2=B2+-a2-, (30) 

r=rl+rz, (31) 

with O1 + , O1 - and 0, + , - potential values across the wake. The total circulation is 

which is determined from the solutions. 

NUMERICAL PROCEDURE 

In equation (27) potential values everywhere are represented by boundary integrals and in 
equation (28) potential values are represented by boundary integrals plus an extra volume 
integral. For incompressible flows the source term o is zero and there is no shock. Thus only is 
solved. The incompressible potential depends only on the boundary integrals on the body surface 
and the wake. If the potential values on the body surface are determined, potential solutions 
everywhere can be calculated. For compressible flows the source term has to be evaluated and, if 
supersonic flow appears, shock integrals have to be performed. 

To determine the potential solution on the body surface, equations (27) and (28) are applied to 
points on the body surface. Therefore the body surface needs to be discretized into many pieces of 
small panels. Applying the surface integrals to each panel will result in a system of simultaneous 
equations. The potential solutions on the body surface are obtained from solutions of these 
simultaneous equations. Within a boundary segment a linear potential formulation is assumed, 

where I is the segment length and 5 varies from zero to 1. Applying the integral equations on the 
body surface and introducing this linear potential relation into these boundary integrals, a set of 
linear simultaneous equations results: 

where i =  1, . . . , rn a n d j =  1, . . . , rn, with rn the total number of nodes on boundaries. For both 
decomposed potentials O1 and @, the matrix [A] is identical. Thus this matrix needs to be 
decomposed only once. 

For compressible flows the source term must be evaluated throughout the volume. For 
transonic flows the integral for shocks is needed because the normal derivative of potential across 
a shock wave is discontinuous. In this work, potential values across shock waves are assumed to 
be continuous because the tangential velocities across shocks are equal. 

The volume integral in equation (28) is evaluated in a field grid obtained by finite element 
discretization. In each element volume the source term inside the volume integral is assumed to be 
constant. Thus 

The integral Jvi (DL d Vcan be calculated analytically and the results are given in the form of a limit 
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0.5 - 

0.7. 

function which can be called in the main programme. Formulations are derived in the Appendix 
at the end of this paper. 

1 
Present Work 

Experiments [Ref. 191 
A Upper Surface 

Lower Surface 

- 

RESULTS AND DISCUSSION 

The solution procedure discussed above was applied to compressible flows over the NACA 0012 
aerofoil for a range of Mach numbers from subsonic to transonic flows. Numerical results are 
compared with experimental data." 

Numerical solutions are obtained on a grid generated by finite element discretization with 
1176 element and 1275 nodes. The boundary grid consists of 30 panels on the upper surface 
and 30 panels on the lower surface, with most panels near the leading and trailing edges. A wake 
network consisting of two panels in the boundary grid is appended to the trailing edge of the 
aerofoil. The wake is aligned with the chord disector. The wake panels are divided into 11 smaller 
grid segments when building up the field grid. The boundary of the field grid is located at a 
distance of six chord lengths around the aerofoil. Beyond that the source distributions are small 
and can therefore be neglected. 

The non-linear potentials are solved by an iterative procedure. First, the linear Laplace 
equation for incompressible flows is solved. Thus the source distribution can be evaluated. The 
iterative solution procedure is performed by using the first-evaluated source distribution. In each 
iteration a system of simultaneous equations on the boundary grid is solved and then the source 
distribution is calculated inside the field grid. If supersonic flow appears, shock integrals are 
calculated. The contributions of the volume and shock integrals are added to the right-hand side 
of the system equations. Because the matrix of the system equations does not change in the 
iteration loops, the matrix is decomposed in advance only once to speed up the solution. The 
iteration number for subsonic flows is in the range 7-10 for the system residual to reach the order 
of For transonic flows, more iterations are needed to reach the same system residual order. 
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Figure 1. Pressure coefficient for NACA0012 aerofoil; 
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Figure 2. Pressure coefficient for NACA 0012 aerofoil; 
M ,  = 0.7, a = 0" 
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For flows with a Mach number of 0.8 at infinity and a 0" angle of attack the number of iterations 
is about 35. 

In Figures 1 and 2, pressure coefficients for compressible flows over the NACA 0012 aerofoil 
with Mach numbers of 0-5 and 0.7 at infinity respectively and a 0" angle of attack are presented. 
Good agreement between numerical results and experimental data in these cases is shown. In 
Figure 3, pressure coefficients for flow over the NACA 0012 aerofoil with a Mach number of 0.5 at 
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Figure 3. Pressure coefficient for NACA 0012 aerofoil; 
M,=0.5,  a=2" 
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Figure 5. Pressure coefficient for NACA0012 aerofoil; 
M,=0.83, ~ = o "  
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Figure 4. Pressure coefficient for NACA 0012 aerofoil; 
M, =0.8, a=O" 
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Figure 6. Pressure coefficient for NACA0012 aerofoil; 
M , = 0 7 5 ,  a = l "  
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infinity and an angle of attack of 2" are presented. The numerical results predict lower pressure 
coefficients along the upper surface of the aerofoil. Pressure coefficients for flows over 
NACA 0012 with Mach numbers of 0.8 and 0.83 at infinity and a 0" angle of attack are shown in 
Figures 4 and 5 respectively. The numerical solutions are fairly close to the experimental data in 
these cases. Pressure coefficients for a Mach number of 0.75 at infinity and angles of attack of 1" 

_._ . 
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0 

Figure 7. Pressure coefficient for NACA 0012 aerofoil; Figure 8. Pressure coefficient for NACA 0012 aerofoil: 
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Figure 9. Iso-Mach lines; M ,  =O%, a = 0" 
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-16 -16 I__ -10 -0.6 Qo 0.6 10 ts 20 

and 2" are shown in Figures 6 and 7 respectively. In the lifting case the numerical solutions predict 
lower pressure coefficients on the upper surface of the aerofoil. 

In Figure 8, pressure coefficients obtained in this work are compared with the numerical results 
provided in Reference 7 for flows with a Mach number of 0.8 and a 0" angle of attack. Our results 

26 
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Figure 10. Iso-Mach lines; M,=083, a=O" 
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-16 
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Figure 12. Iso-Mach lines; M, =0.75, a = T  

are close to the results of Reference 7 obtained by a finite difference approach for the shock 
calculation. In the integral formulation of Reference 7 the shock integral does not appear. 
Therefore the difference scheme has to be incorporated with the integral approach because the 
iterative procedure for subsonic flows does not converge for transonic flows. In this work, shock 
integrals are performed explicitly and artificial viscosities studied in Reference 3 are added in 
supersonic regions. 

In Figures 9 and 10, iso-Mach lines for Mach numbers of 0.8 and 0-83 respectively and an angle 
of attack of 0" are presented. Iso-Mach lines for a Mach number of 0 7 5  and angles of attack of 1" 
and 2" are shown in Figures 11 and 12 respectively. In these figures the shock regions are 
relatively thick owing to the grid size near the shock. In the present work there is no grid 
clustering used near the shock regions. 

CONCLUDING REMARKS 

The numerical study in this work shows that the boundary linear integral method provides an 
alternative approach for solving transonic potential flow problems. With this method the full 
potential equation is solved only on the body surface. The potential solutions in the entire flow 
field are represented by the solutions on the body surface and are used for calculating the source 
distribution. Since the number of grid points on the body surface is much smaller than that in the 
entire flow field, the requirement for computer CPU time is reduced. 

With the boundary linear integral method the grid system is divided into two parts: surface 
grids and field grids. The surface grids are used to obtain the potential solution on the surface and 
the field grids are used to calculate the source distribution and the field integral. Since there is no 
specific requirement for the field grids, many kinds of grid can be adopted by the boundary 
integral method. Thus this method eliminates the difficulty in grid generation encountered in 
other field methods. 
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In this work the shock integrals generated by Green function theory are performed explicitly 
when the flow is transonic. Our results show that the shock integrals are necessary to capture 
sharp shock jumps. In this approach the contribution of the shock integrals is added to the right- 
hand side of the discretized simultaneous equations. This approach is a shock-capturing method 
because there is no requirement for preknown shock locations. The numerical results compare 
fairly well with the experimental data. 

APPENDIX 

The volume integral given by equation (34) is calculated analytically and the results are presented 
as a limit function which can be written as a standard function in a FORTRAN programme. 

Assume the element integral volume boundaries can be represented by 

y = a + b x .  (35) 
Introducing X = x - x p  and y = y - y , ,  the boundary equation becomes 

y = A + BX, 

where 

A = a  - yp + bx, ,  

B=b.  

The element volume integral becomes 

where 

X* = X A  - x p ,  

2, = x* - x p ,  

j u =  A” + Bu 2,  (42) 

j L =  A ,  + BL2. (43) 
In equations (42) and (43) the subscript U represents the upper boundaries and L denotes the 
lower boundaries. Carrying out the integration, we can obtain the limit function of the volume 
integral 

F ( 2 )  = (A2 + 05B2’)ln [( 1 + B Z ) ( f  + 2 B ,  X + C ,  )] + Xz tan- 
, A + B x  

X 

B ( C ,  + 2 B : ) - 2 A B l D ,  A(C1-2B:)DI +2BB: ,X+B, 
- ln(fZ + 2B,X+ C, )+ tan- - 

2 El El 

- 1.5BXZ+(BB1 -2A)X-AD1X,  (44) 
where 

AB 
1+B2’  

B ,  =- (45) 
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I c I m 
0 X 0 X 

Figure 13. Volume integration when A=O Figure 14. Volume integration by subregions 

1+2B2 
D ,  =- 

E ,  =- 

1+B2 ' 

A 
1+B2' 

(47) 

(48) 

If A=O, the singularity location (xp, y,) is on the line represented by y=u+ bx as shown in 
Figure 13. The limit function becomes 

F(x) = 0.5 Bx2 In [( 1 + B2)x2] - 1.5~2~ + x2 tan-' B .  (49) 

If the singularity location (xp, y,) is on the node point of the finite integral volume, x=xp and 
y=yp .  Thus the limit function value becomes zero. 

The value of a volume integral is obtained by calling the limit functions. In Figure 14, a typical 
finite integral volume is shown. The integral region is divided into three subregions. In region 1 
the integral value is 

11 = FAU(2D) - - CFAU (%A )- FAD(xA )I 5 (50) 

I2  = FAU 1- FDB 1- CFAU (xD) - FDB ( x D ) l ,  (51) 

I 3  =FUB(XB)-FDB(XLI)- [FUB(xU).-FDB(xU)l. (52) 

(53) 
Special care should be taken when the finite integral volume appears to be different from the one 
shown in Figure 14. However, the limit function form remains the same. 

in region 2 we have 

while in region 3 

The integral value in this integral volume is 

I = I ,  +I, + 1 3 .  
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